Malaysia Climate Action Simulator (MCAS) User's Guide

Table of Contents

Introduction	3
Technical Design	5
Sectoral coverage	5
Modification	;
Scenario and Ambition levels	5
Excel Spreadsheet Model	7
How the Excel Spreadsheet works (Using the main levers)	7
How the Excel Spreadsheet works (Using all the levers)12	L
Creating your pathway in the spreadsheet22	L
Webtool Model15	;
How the webtool model works (using the main levers)15	;
How the webtool model works (using all the levers)17	7
Example Pathways20)
Limitations22)
Final remarks24	ł

Introduction

Climate change has been identified as an existential threat by the United Nations. Scientists warn that climate change is a key driver of extinction, and that it will affect all the aspects identified in the Sustainable Development Goals (SDGs).

The Paris Agreement, negotiated by 196 nations during the 2015 United Nations Climate Change Conference at Paris, France, is targeted to limit global warming to well below 2°C over the preindustrial levels and pursue efforts to limit the temperature increase even further to 1.5°C. Under the agreement, each signatory needs to submit its own national plan, set targets for emissions reductions and specific pathways by which it aims to meet those targets. These plans and targets are also known as Nationally Determined Contributions (NDCs).

According to the NDC assessment done by the Climate Action Tracker, most of analyzed NDCs are considered "Insufficient", "Highly Insufficient" or "Critically Insufficient". Very few selected countries submitted NDC that aligns with the 2°C and 1.5°C aspirations of the Paris Agreement.

Malaysia has recently updated its NDC and it includes the following increased ambition:

- 1. The 45% of carbon intensity reduction by 2030 is unconditional;
- 2. The target is an increase of 10% from the earlier submission; and
- 3. The greenhouse gas (GHG) coverage is expanded to seven (7) GHGs: carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF_6) and nitrogen trifluoride (NF_3).

Although Malaysia has set a clear climate action target, there are many discussions, both in the policy forums and within the industry, as companies and individuals attempting to obtain clarifications on the following questions:

- 1. When will Malaysia's emissions peak and enter absolute emission reductions?
- 2. What does a low emissions pathway look like for Malaysia? How can we achieve carbon neutrality or net zero GHG emissions?
- 3. How can one specific sector (e.g. transport, energy or waste) contribute to the emissions target? What is the breakdown in percentage?
- 4. Which sectors should we focus on? Which ones are less important?
- 5. How much energy could we supply from different energy technologies?
- 6. If other sectors remain the same, how much CO₂ reduction can be achieved under the most ambitious renewable energy scenarios?
- 7. How do mitigation measures affect energy supply and land use?
- 8. What is the full potential of CO₂ reductions in Malaysia?

Simulations can be used to answer the questions above. In addition, a well-built, robust simulation tool can be used to explore and chart low emissions pathways for a nation. With these two reasons in mind, the Malaysia Climate Action Simulator (MCAS) is developed by Malaysian Green Technology and Climate Change Centre (MGTC).

Formerly known as the Malaysia 2050 Carbon Calculator but renamed to avoid carbon footprint calculator confusion, MCAS is developed using the modelling framework of the UK 2050 Carbon Calculator, with support from the UK Department of Business, Energy & Industrial Strategy (BEIS), Mott MacDonald, CLIMACT and Imperial College London (ICL). The UK 2050 Carbon Calculator,

published by the UK Department of Energy & Climate in 2010, has been used to explore the various options on how the UK can best meet energy needs while achieving the ambitious 80% GHG reduction target by 2050.

Fitted with Malaysia-specific data and modified to best reflect Malaysian circumstances, MCAS covers the five sectors outlined in the national greenhouse gas inventory. The five sectors are:

- 1. Energy
- 2. Industrial Processes & Product Use (IPPU)
- 3. Agriculture
- 4. Land Use, Land Use Change & Forestry (LULUCF)
- 5. Waste

MCAS comes in two versions: Excel (xxx) and Web Tool (xxx). The Excel version serves as the fundamental model that contains all the parameters, data and calculations, which can be arduous and daunting for new users to navigate and use. On the other hand, the Web Tool version offers a user-friendly alternative for users to explore.

As a scenario painter, MCAS can help users to explore the different low carbon technologies and their potential reduction contribution to the national emissions. Also, it allows users to develop their own pathways to achieve specific emissions reduction target while considering the available resources and priorities. Most importantly, it can serve as a platform for users to engage in discussions on the selection of low carbon opportunities and as a tool to raise climate change awareness among the general public. The following questions can be answered using MCAS:

- 1. What are the key sectors that contribute to the national GHG inventory?
- 2. Which sectors should we focus on? Which ones are less important?
- 3. Given the most ambitious scenarios, how much CO₂e reduction can be achieved?
- 4. If we focus solely on the energy sector, how much CO₂e reduction can be achieved?
- 5. What does a low emissions (e.g. carbon neutrality or net zero GHG emissions) pathway look like for Malaysia?

While not exhaustive on all aspects, this basic guide document aims to provide users an overview on how the MCAS Excel and Web Tool can be used. In addition, users can always refer to the original <u>2050</u> <u>Calculator Spreadsheet: "How to" Guide</u> for supporting information and understand the differences between the 2050 Calculator and MCAS.

Technical Design

Sectoral coverage

MCAS covers almost all the GHG emission released by the energy, industrial processes and product use (IPPU), land use, land use change and forestry (LULUCF), agriculture and waste sector in Malaysia (i.e. Peninsular Malaysia, Sabah and Sarawak). In MCAS, mitigation solutions, known as levers, are grouped into seven (7) main categories, known as sectors.

Modification

To better reflect the national circumstances, several changes are made to the original model. The changes are as follows:

Scenario and Ambition levels

For each sector and lever, there are a total of four (4) scenarios. The four levels are intended to reflect the different potential future scenarios, specifically on the basis of progressively greater efforts or

ambitions towards a low carbon future. For example, Level 1 represents a business-as-usual (BAU) approach towards climate change mitigation, with low effort and continuation of existing capacity, technology and no change in consumption behaviour. On the other hand, Level 4 represents the most ambitious scenario, with great efforts leading toward increase in renewable energy, advanced technology, and green lifestyle adoption. The ambition levels are explained in the following table:

Level 1	Level 2	Level 3	Level 4
Current ambition	Increased ambition	Ambitious	Transformation
Current legal measures, "BAU"	More extensive use of existing technologies	Significant effort based on rapid implementation of available technologies	Max implementation requiring fast deployment and, in some cases, some type of innovation
BAU = No additional policy intervention from 2016	Existing policies and planned initiatives	Additional mitigation measures implemented	Innovative, feasible and game-changing solutions

Excel Spreadsheet Model

How the Excel Spreadsheet works (Using the main levers)

1. Navigate to the "Control" worksheet.

Fi	le	Home	Insert	Draw	Page La	iyout	Formula	s Data	Review	/ View	He	р								1)	合 Share	P (Commen	ts
A4		×	: ×	$\checkmark f_X$																					~
1 G	A iuide	8	с	D			E	F	G	н	L L L	к	L	м	N	0	Р	Q	R	S	T	U	v	w	-
2	onten	e																							
4	onten	User Guide																							71
5			Overview																						
6			Sheet description	ons																					
7			Sheet structure	diagram																					
9			Navigation tips																						
10		Developer	Guide																						
11			VBA description																						
12			Formatting and	colour coding																					
14																									
15 U	lser Gu	ide																							
16																									
17		Overview																							
18																									
19			Nam	e		The Mack	Carbon C	alculator	custom that all		colore pathu	unus ko deserv	wheelesties	lock diag access	t som hu 200	0 and on to	2100								
20			Scor	ose e & Snecificatio	n	link to se	ne / snec di	the OK energy	on right)	lows you to ex	cpiore patriv	vays to deca	arbonisation,	, including ne	et zero by 205	o and on to.	2100.								
22			Crea	tion date																					
23			Doc	Shares link																					
24			Loca	tion (if not Doc	Shares)																				
25			Own	er / Contact		BEIS Cent	tral Modellin	gTeam																	
27			Secu	rity classificatio	n																				
28			Vers	ion number																					
29			Link	to model's QA I	og																				
30			Link	to model's assu	mptions log	Assumpti	ions Log Con	tained within n	nodel																
31			Link	to QA guidance																					
33																									
34		Sheet des	criptions																						
35			Upd	ited		V35.0																			
36			Shee			Category		escription																	
20			Shee			Category		esciption				-				1 -		-							
-	•	Guid	de OnePa	ager Cor	ntrol M	1y2050 CC	ONTROL	WebOu	tputs M	odel R	esults	Energy	Balance	Placeh	olderVal	ues F	ullTin	(+) :	4)
Read	dy Ca	lculate																	III		E			+	70%
																				-					

2. In the cell C1, make sure that "Web tool" is selected.

File I	Home I	insert Draw Page Layout	Formulas Data Review View	Help	Ģ	🔰 🖻 Share 🛛 🖓 Comments
70	•	$\times \checkmark f_r$				
1						
2 A A	в	c	D E F G H	i J	к	
1 C	ontrol	Web tool	Selected Lever Level	Desc	ription of Levers	
2			!Amb! ###			
60 Le	vers Webt	ool				
61						
02		URL of current web tool lever settings	#REF!			
64		Copied URL	https://ukcaic2050testapp.london.cloudapps.digi	langth 100	emissions-and-primary-energy-consumption/revers=111111111111111111111	45
65			https://ukcalc2050testapp.londop.cloudar.String	https://	, / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45 aaabaaabaaabaaaaaaaaaaaaaabaabbabbbcbb
66			11	Little Little		
67						
68		output.lever.names	input.lev input.lever.star input.lever.end			
69		_Lever Name	Ambitio Start Speec End Ambition Timin	Descri	Lever description	Level 1
70	Transport	Malaysia Transport Demand	1 2020 30 2050	205	How far and by what methods passengers travel in Malaysia	By 2050 the average annual distance
71		International Aviation	1 2020 30 2050	0	Distance flown abroad by passengers from Malaysia	By 2050 the average annual distance
72		Light Vehicles - Electric	1 2020 30 2050	Fraction	Share of cars, vans and small trucks that are battery electric vehicles	0% of cars are electric by 2050 (0%
73		Light Vehicles - Hydrogen	1 2025 25 2050	of	Share of cars, vans and small trucks that are hydrogen-fuelled	0% of cars are hydrogen-fuelled by
74		Light Vehicles - Hybrid	1 2020 30 2050	199	Share of cars, vans and small trucks that are plug-in hybrid vehicles	10% of cars are hybrids by 2050 (0% of
75		Light Vehicles - Biorder	1 2020 30 2050	1000	Share of large trucks, buses and trains that are battery electric vehicles	10% of large trucks 0% of buses and
77		Heavy Vehicles - Electric	1 2025 25 2050	Emi ssio	Share of large trucks, buses and trains that are budrogen fuelled	0% of large trucks and 0% of buses and
78		Heavy Vehicles - Hybrid	1 2020 30 2050	ns,	Share of large trucks and buses that are plug-in hybrid vehicles	0% of large trucks and 0% of buses a
79		Heavy Vehicles - Biofuel	1 2020 30 2050	C02	Share of fuel in conventional large trucks, buses, trains and ships that is biofue	10% of fuel used in convensional lan
80		Aviation Efficiency	1 2020 30 2050	e	Energy intensity of aircraft travel and the share of aircrafts that are hybrid ele	ctric Aircrafts are 18% more efficient that
81		Aviation Biofuel	1 2025 25 2050	1	Share of fuel used in conventional aircrafts that is biofuel.	1% of liquid fuel used in aircraft is bi
82	Buildings	Buildings demand for hot water and AC	1 2020 30 2050		Demand for hot water and penetration of air conditioning (AC)	By 2050, 100% of homes have AC an
83		Buildings Insulation	1 2020 20 2040	1	This lever is not relevant for Malaysia	
84		Solar Water heater Share	1 2020 30 2050		Share of heat supplied by solar water heater	3% of homes are heated by solar wa
85		Heat Pump Share	1 2020 30 2050	(Share of heat supplied by heat pumps	0% of homes are heated by heat pur
86		Hybrid Heat Share	1 2020 30 2050	1	Share of heat supply from hybrid heat pump / gas boilers	0% of homes are heated by hybrid he
+	Guide	OnePager Control My2050 CC	NTROL WebOutputs Model Result	s EnergyF	Balance PlaceholderValues FullTin (+) : (haati 7 TM/k feam lasas saala haat aumas. •
eady Calo	ulate				III (III)	

3. Navigate to the *"Levers Webtool"* section that starts at Line 60.

4. Change the value (ranging from 1 to 4) for the Ambition cells (column D) for each of the levers (Line 70 – 118). You may refer to column K for the description of the lever and column L to O for the description of each of the ambition level. For example, it is shown in the following diagram that the ambition lever for the *"Malaysia Transport Demand"* is set at 1.

File	Home	Insert Draw Page Layout	Formulas Data Review Vie	w Help	(3) 🖻 Share 🛛 🖓 Comments
D70		$\times \checkmark f_x$				~
[+]						
2						
1 2 4	A B	c	D E F G H	1 1	к	
	Control	Web tool	Selected Lever Level	Desci	intion of Lovers	
1	control	WED LOOP	Sciected Level Level	Desci	paon of Levers	
2			!Amb! ###			
60	Levers Webt	ool				
61			T annual			
62		ORL of current web tool lever settings	https://ukcalc2050testanp.london.clouda	nos digital/ouendeu/e	missions and primary energy consumption/2levers=111111111111111111111111111111111	111111111111111111111111111111111111111
64		copied one	Decoded Conied URL Settings	String length 109	inssions-and-primary-energy-consumption/nevers-1111111111111111111111	45
65			https://ukcalc2050testapp.london.clouda	string https:/		aaabaaabaaabaaaaaaaaaaabbabbbcbbc
66				a de la de		
67						
68		output.lever.names	hipotiles input.lever.star input.lever.end		output.lever.descriptions	
69		Lever Name	Ambitio Start Speec End Ambition	Timing Descrip	Lever description	Level 1
70	Transport	Malaysia Transport Demand	1 2020 30 2050	205	How far and by what methods passengers travel in Malaysia	By 2050 the average annual distance
71		International Aviation	2020 30 2050	0	Distance flown abroad by passengers from Malaysia	By 2050 the average annual distance
72		Light Vehicles - Electric	1 2020 30 2050	tion	Share of cars, vans and small trucks that are battery electric vehicles	0% of cars are electric by 2050 (0% o
73		Light Vehicles - Hydrogen	1 2025 25 2050	of	Share of cars, vans and small trucks that are nydrogen-fuelled	0% of cars are hydrogen-fuelled by 2
75		Light Vehicles - Biofuel	1 2020 30 2050	199	Share of fuel in conventional cars, vans and small trucks that is biofuel	10% of fuel used in conventional car
76		Heavy Vehicles - Electric	1 2020 30 2050	100%ini	Share of large trucks, buses and trains that are battery electric vehicles	0% of large trucks, 0% of buses and 0
77		Heavy Vehicles - Hydrogen	1 2025 25 2050	ssio	Share of large trucks and buses that are hydrogen-fuelled	0% of large trucks and 0% of buses a
78		Heavy Vehicles - Hybrid	1 2020 30 2050	ns,	Share of large trucks and buses that are plug-in hybrid vehicles	0% of large trucks and 0% of buses a
79		Heavy Vehicles - Biofuel	1 2020 30 2050 -	CO2	Share of fuel in conventional large trucks, buses, trains and ships that is biofuel	10% of fuel used in convensional larg
80		Aviation Efficiency	1 2020 30 2050		Energy intensity of aircraft travel and the share of aircrafts that are hybrid elect	ric Aircrafts are 18% more efficient than
81		Aviation Biofuel	1 2025 25 2050		Share of fuel used in conventional aircrafts that is biofuel.	1% of liquid fuel used in aircraft is bic
82	Buildings	Buildings demand for hot water and AC	1 2020 30 2050		Demand for hot water and penetration of air conditioning (AC)	By 2050, 100% of homes have AC and
83		Buildings Insulation	1 2020 20 2040		This lever is not relevant for Malaysia	
84		Solar Water heater Share	1 2020 30 2050		share of heat supplied by solar water heater	3% of nomes are heated by solar wa
68		heat Pump share	1 2020 30 2050		share of heat supplied by heat pumps	0% of homes are heated by heat pun
80		And a state of the second seco	1 2020 30 2030	et al and a second second	Plateint/Atakunak kank annalisik kuunstas annaa RMCL and annuad annaa (PCL ka	at 3 Title from large coals host summer
-4 F	Guide	OnePager Control My2050 CC	NTROL WebOutputs Model	Results EnergyB	lalance PlaceholderValues FullTin 🛞 🗄 🖣	Þ.
Ready (Calculate				III III	III

File	Home	Insert Dra	aw Page	Layout F	ormulas	Data Rev	view Vie	w He	lp						٩	ピ Shar	e 🖓 C	omments
B235	•	$\times \checkmark$	∫x Em	issions by se	ctor													~
	A B		С		D				E		F	G	н	1	J	к	L	M
1 Re	sults										2015	2020	2025	2030	2035	2040	2045	2050
230																		
231																		
232																		
233																		
234																		
235	Emissio	ons ky sector																
236						Dedicated	GHG Remova	al 👘			-	-	-	-	-	-	-	
237						Electricity (Generation				102.96	105.	109.34	100.88	87.67	80.4	87.53	93.27 \$
238						Hydrogen F	Production				-	-	-	-	-	-	-	
239						Other Ener	rgy Supply				17.93	14.19	10.95	8.66	6.9	5.55	4.51	3.68 #
240						Waste Mar	nagement				36.38	35.23	34.55	33.87	33.18	32.5	31.8	31.11
241						Agriculture	e & Land Use				-251.1	-263.7	-259.87	-256.03	-252.34	-248.63	-247.39	-245.94
242						Industry					49.38	49.24	50.33	48.88	46.76	43.66	39.76	34.17
243						Buildings-R	Residential				1.42	1.51	1.6	1.68	1.75	1.82	1.88	1.94
244						Buildings-N	Non-Resident	ial			2.32	2.6	2.81	3.04	3.27	3.52	3.78	4.18
245						Transport-	Domestic				88.04	92.64	92.99	86.29	92.28	97.23	103.	108.26
246						Transport-	Internationa				6.05	8.58	11.33	14.13	16.76	19.25	22.59	25.85
247						Buildings-H	leat Network				-	-	-	-	-	-	-	
248				Imp	orts	Imports					-	-	-	-	-	-	-	- 1
249																		
250				Assi	igning Build	ings Heat Netw	ork Direct er	nissions	to other sectors									
251						Any emissi	ons associat	ed with p	roducing heat she	ould be assigne	d to buildin	igs (reside	ntial or No	n-residen	tial) and a	ny emissio	ons associa	ated with p
252						Residentia	I Network He	at Emissi	ions		-	-	-	-	-	-	-	
253						Non-Reside	ential Netwo	rk Heat E	missions		-	-	-	-	-	-	-	
254																		
255							6116 B											
250						Dedicated	GHG Kemova				102.06	105	100.34	100.99	97.67	-	97 53	02.27
257						ciectricity (Generation				102.96	105.	109.34	100.88	67.67	60.4	67.53	93.2/ # -
-	Guide	OnePager	Control	My2050 COI	NTROL	WebOutputs	Model	esults	EnergyBalance	Placeholde	rValues	FullTin	• + :	•				Þ
Ready	Calculate													III		л – —		+ 90%

5. Navigate to the *"Results"* worksheet to view the results in emissions.

6. Otherwise, navigate to the *"WebOutputs"* worksheet to view the emissions results presented in graphs.

															-					
в	с			D			E		F		G		н	a. 1	j l	ĸ	i. I	м	N	0
Outputs										w		w.	20 -	20 -	20 -	20 -	20 -	20 -	20 -	1
c	Overview		GHG Emissio	ans / Prim	ary Enei P	age1:Chart1	0	Title Axis Unit Named Ra Graph Typ Notes	nge e	Annua MtCO outpu Stacke Stacke	l Greenhouse Re/yr emissions.s d Area with d area with	e Gas Emis ector overlying L reference I	sions ine(s) ine, and dots	for carbc	in budget I	levels (as in	current cla	assic calcula	or)	
400.								Categories		Categ	prised by sec	tor (align v	rith calibratic	n propos	al?)					
300.		_		_									2016	2020	2025	2030	2035	2040	2045	
200										Dedic	ited GHG Re	moval			-	*	-	•		
2000		-								Electr	city Generat	ion	102.96	105.	109.34	100.88	87.67	80.4	87.53	
100.										Hydro	gen Producti	on								
										Other	Energy Supp	ly	17.93	14.19	10.95	8.66	6.9	5.55	4.51	
100	2016 202	2025	2030	2035	2040	2045	2050			Waste	Manageme	nt	36.38	35.23	34.55	33.87	33.18	32.5	31.8	
.100.										Agricu	ture & Land	Use	-251.1	-263.7	-259.87	-256.03	-252.34	-248.63	-247.39	~
-200.	_									Indust	Y Devident	4	49.38	49.24	50.33	48.88	46.76	43.66	39.76	
-300.										Buildi	gs-Residenti	dential	1.42	1.51	1.0	1.68	1.75	1.82	1.88	
	Dedicated G	K Removal	Electricity Ge	eneration	Made	ann Productio				Transi	ort-Domest	le	88.04	02.64	02.00	95 20	07.28	97.23	103	
		Current -	checonomy on	inter a contra		- agent rounces	1.			Trans	ort-Internat	ional	6.05	8 58	11 33	14.13	16.76	19.25	22.59	
	Other Liverg	Subbik	waste Mana	gement	indus	trγ				Total	missions	ionai	53.38	45.28	54.03	41.39	36.25	35.28	47.45	-
	Buildings-Re	.idential	Buildings-No	.n-Residential	Trans	port-Domestic				Totar			33.30	4318.0	54,05	44.00	-0:60	53120	47,40	-
	Transport-In	ernational —	Agriculture 8	k Land Use																

You may also explore the "WebOutputs" worksheet to view the results in other formats, for example: emissions by transport and energy consumption by transport.
 Home Insert Draw Page Layout Formulas Data Review View Help

How the Excel Spreadsheet works (Using all the levers)

1. Navigate to the "Control" worksheet.

File	Home Insert Draw Page Layout Formulas Data Review View Help	3	பி Share	Comments
A4	\cdot : $\times \checkmark f_{\rm f}$			~
A A		R S T	U	v w
2 Conten				
4	User Guide			
6	Destruies Sheet descriptions			
7 8	Sheri Shutur diagram User Summary			
9 10	Navigation tips Developer Guide			
11	VBA description Formatine and colour codine			
13				
15 User Gu	Suide			
16	Overview			_
18	Name The MacKay Carbon Calculator			
20	Purpose To provide a model of the UK energy system that allows you to explore pathways to decarbonisation, including net zero by 2050 and on to 2100.			
22	Doppe as approximation in the to acopy y again along thempseties on Figure y Creation date			
23	Doc shares link Location (if not Doc Shares)			
25 26	Owner / Contact BBIS Central Modelling Team Policy (or other) customer			
27 28	Security dasification Version number			
29 30	Unix to model's assumptions log Assumptions Log Contained within model			
31	Link to QA guidance			
33	theat development			_
35	Updated V35.0			
36 37	Sheet Category Description			*
· · ·	Guide OnePager Control My2050 CONTROL WebOutputs Model Results EnergyBalance PlaceholderValues FullTin (+)	: •		Þ
Ready Ca	Calculate]	+ 70%

3. Navigate to the *"Manual Lever Selection and Model Lever Values Applied"* section that starts at line 168.

File	Home I	nsert Draw Page Layout F	ormulas Dat	a Review	View He	elp				۵ 🔇	Share	Comment?	5
Control.	M E	× ✓ ƒx Manual											~
1 2	A B	с	D E	F G H	1	J AI AJ	AK AL AI	M AN AO	- NF AQ	AR AS	AT	AU	*
1	Control	Manual	≎elected	Lever Leve		Descr							
2				###									
168	Manual Leve	r Selection and Model Lever Values A	pplied										
169													
170			Manual_Manual_	Manu Manual_End		My2050_Spe	ed		Web tool_ We	b tool_ Web t	ool_Speed		
172			Manual Choices						Lever levels a	pplied			
173			Share/P Start	Speec End Ambitic	on Timing	Speed			Share/Per Sta	rt Speed	1		
174		Domestic passenger travel demand	1 2020	30		30			1	2020	30		
175		Cycling share of passenger travel demand	1 2020	30		30			1	2020	30		
177	AmbShrPen.	Car share of passenger travel demand	1 2020	30		30			1	2020	30		
178	AmbShrPen.	Bus share of passenger travel demand	1 2020	30		30			1	2020	30		
179	AmbShrPen.	Rail share of passenger travel demand	1 2020	30		30			1	2020	30		
180	AmbShrPen.	Aviation share of passenger travel demand	1 2020	30		30			1	2020	30		
181	AmbDemUn	International passenger travel demand	1 2020	30		30			1	2020	30		
182	AmbOcc.car	Car Occupancy/sharing rates	1 2020	30		30			1	2020	30		
183	AmbRng.car	Car own or hire (average vehicle mileage)	1 2020	30		30			1	2020	30		
184		Car - Electric vehicle distance share	1 2020	30		30			1	2020	30		
185		Car - Plug-in Hybrid Electric vehicle distance s	1 2025	25		25			1	2025	25		
187		IGV - Electric vehicle distance share	1 2020	30		30			1	2020	30		
188		LGV - Hydrogen vehicle distance share	1 2025	25		25			1	2025	25		
189	AmbShrPen.	LGV - Plug-in Hybrid Electric vehicle distance	s 1 2020	30		30			1	2020	30		
190	AmbShrPen.	HGV Rigid - Electric vehicle distance share	1 2020	30		30			1	2020	30		
191	AmbShrPen.	HGV Rigid - Hydrogen vehicle distance share	1 2025	25		25			1	2025	25		
192	AmbShrPen.	HGV Rigid - Plug-in Hybrid Electric vehicle dist	ti 1 2020	30		30			1	2020	30		
193	AmbShrPen.	HGV Articulated - Electric vehicle distance sh	a 1 2020	30		30			1	2020	30		
194	AmbShrPen.	HGV Articulated - Hydrogen vehicle distance	s 1 2025	25		25			1	2025	25		-
105	Guide	OnePager Control My2050 CON	VTROL WebC	Outputs Model	Results	EnergyBalance	PlaceholderValues	FullTin (+)	4	2020	30	Þ	1
Ready C	alculate					57			III II	л m.		+ + /	80%

4. Change the value (ranging from 1 to 4) for the "Share/Penetration" cells (column D) for each of the levers (Line 174 – 341). You may refer to column K for the units of the lever and column L to O for the parameter used for each of the ambition level. For example, it is shown in the following diagram that the ambition lever for the "Domestic passenger travel demand" sublever is set at 3.

File	Home	Insert Draw Page Lay	yout F	Formulas	Data	Review	View	Help						٩	d Share	Comments	\$
D174		$\times \checkmark f_x$ 3															~
									ļ								-
1																	
1 2	A B	С		D	E F	G	H	I J		к					L		
1	Contro	Manual		Select	ed Le	ver Lev	/el	Desc	ription o	f Levers							
	2			•		###											
10	8 Manual Lev	ver Selection and Model Leve	r Values A	Applied													
10	i9																
17	10			Manual M	anual Ma	w Manual Fr	vi		=OFFSET(lv1_0_1)		=b/1					
17	2			Manual Ch	oices	iu wanuai_ci	iu ii		-OFFSEI	101.,0,-1)		Ambition level options					
17	3			Share/P St	rt Spe	ed End Aml	bition Timing	£	Units			lv1.					
17	4 AmbDeml	Uni Domestic passenger travel dema	ind	3	2020	30			Psg km. / p	person							
17	5 AmbShrPe	Walking share of passenger trave	el demand	1	2020	30			•••								
11	AmpShrPe	Car share of passenger travel de	i demand	1	2020												
17	AmbShrPe	Bus share of passenger travel de	mand	1	2020	30											
17	9 AmbShrPe	Rail share of passenger travel de	mand	1	2020	30											
18	O AmbShrPe	Aviation share of passenger trav	el demand	1	2020	30											
18	11 AmbDeml	Uni International passenger travel de	emand	1	2020	30			Psg km. / p	person							
18	2 AmbOcc.c	an Car Occupancy/sharing rates		1	2020	30			Psg / Vehic	cle							
18	AmbRng.c	an Car own or hire (average vehicle	mileage)	1	2020	30			km. / Vehic	cle							
18	AmbShrPe	Car - Electric vehicle distance sh	are	1	2020	30			•••								
10	AmbShrPe	Car - Plug-in Hybrid Electric vehic	share distance	1 1	2025	20											
15	AmbShrPe	IGV - Electric vehicle distance sh	are	1	2020	30											
18	8 AmbShrPe	LGV - Hydrogen vehicle distance	share	1	2025	25											
18	9 AmbShrPe	ILGV - Plug-in Hybrid Electric vehi	cle distance	s 1	2020	30											
19	O AmbShrPe	n. HGV Rigid - Electric vehicle dista	nce share	1	2020	30											
19	1 AmbShrPe	HGV Rigid - Hydrogen vehicle dis	tance share	1	2025	25											
19	2 AmbShrPe	n. I HGV Rigid - Plug-in Hybrid Electri	c vehicle dis	u 1	2020	30			•••								
19	AmbShrPe	HGV Articulated - Electric vehicle	e distance sh		2020	50			***								
19	AmbShrPe	- HGV Articulated - Hydrogen Veni	Electric vehi		2025	20											Ŧ
I	Guide	OnePager Control M	y2050 CO	NTROL N	ebOutp	uts Mod	el Results	Energy	Balance	Placehold	erValues	FullTin 🕂 🗄	4			Þ	
Ready													Ħ		I - —	+ + ;	\$0%

File	Home	Insert Dra	aw Page	Layout F	ormulas	Data Rev	view Vie	w He	lp						٩	ピ Shar	e 🖓 C	omments
B235	•	$\times \checkmark$	∫x Em	issions by se	ctor													~
	A B		С		D				E		F	G	н	1	J	к	L	M
1 Re	sults										2015	2020	2025	2030	2035	2040	2045	2050
230																		
231																		
232																		
233																		
234																		
235	Emissio	ons ky sector																
236						Dedicated	GHG Remova	al 👘			-	-	-	-	-	-	-	
237						Electricity (Generation				102.96	105.	109.34	100.88	87.67	80.4	87.53	93.27 \$
238						Hydrogen F	Production				-	-	-	-	-	-	-	
239						Other Ener	rgy Supply				17.93	14.19	10.95	8.66	6.9	5.55	4.51	3.68 #
240						Waste Mar	nagement				36.38	35.23	34.55	33.87	33.18	32.5	31.8	31.11
241						Agriculture	e & Land Use				-251.1	-263.7	-259.87	-256.03	-252.34	-248.63	-247.39	-245.94
242						Industry					49.38	49.24	50.33	48.88	46.76	43.66	39.76	34.17
243						Buildings-R	Residential				1.42	1.51	1.6	1.68	1.75	1.82	1.88	1.94
244						Buildings-N	Non-Resident	ial			2.32	2.6	2.81	3.04	3.27	3.52	3.78	4.18
245						Transport-	Domestic				88.04	92.64	92.99	86.29	92.28	97.23	103.	108.26
246						Transport-	Internationa				6.05	8.58	11.33	14.13	16.76	19.25	22.59	25.85
247						Buildings-H	leat Network				-	-	-	-	-	-	-	
248				Imp	orts	Imports					-	-	-	-	-	-	-	- 1
249																		
250				Assi	igning Build	ings Heat Netw	ork Direct er	nissions	to other sectors									
251						Any emissi	ons associat	ed with p	roducing heat she	ould be assigne	d to buildin	ıgs (reside	ntial or No	n-residen	tial) and a	ny emissio	ons associa	ated with p
252						Residentia	I Network He	at Emissi	ions		-	-	-	-	-	-	-	
253						Non-Reside	ential Netwo	rk Heat E	missions		-	-	-	-	-	-	-	
254																		
255							6116 B											
250						Dedicated	GHG Kemova				102.06	105	100.34	100.99	97.67	-	97 53	02.27
257						ciectricity (Generation				102.96	105.	109.34	100.88	67.67	60.4	67.53	93.2/ # -
-	Guide	OnePager	Control	My2050 COI	NTROL	WebOutputs	Model	esults	EnergyBalance	Placeholde	rValues	FullTin	• + :	•				Þ
Ready	Calculate													III		л – —		+ 90%

5. Navigate to the *"Results"* worksheet to view the results in emissions.

6. Otherwise, navigate to the *"WebOutputs"* worksheet to view the emissions results presented in graphs.

	•	XV	fx	=Results IM	340/uc_GH0	i.Mt.											
												-	(a)	1.4			- 23
B		С		D		1	E	F	G	н	1	J	к	L	M	N	0
Outpu	uts								v v	20 -	20 -	20 *	20 -	20 *	20 *	20 -	
	Overv	iew															
			10	GHG Emissions /	Primary Ener P	age1:Chart1											
						100		Title	Annual Greenhouse Gas Emi	ssions							
								Axis Unit	MtCO2e/yr								
								Named Range	output.emissions.sector								
								Graph Type	Stacked Area with overlying	Line(s)							
								Notes	Stacked area with reference	line, and dots	s for carbo	on budget I	levels (as in	current cla	ssic calculat	tor)	
400									Categorised by sector (align	with calibratio	on propos	al?)					
4017.								Categories									
300.				and the second se		-			Dedicated CHC Research	2016	2020	2025	2030	2035	2040	2045	-
200.									Electricity Constantion	102.05	105	100.14	100.00	-	-		
100		_	_						Historean Production	102.96	105.	109.34	100.88	87.07	80,4	87.53	
100.									Other Energy Supply	17.93	14 19	10.95	8 66	6.9	5.55	4.51	
				2020 24	25 2040	20.45	1050		Waste Management	36.38	35.23	34.55	33.87	33.18	32.5	31.8	
3	2014	2020	30.35	2030 25	33. 2040	2043	20.50		Agriculture & Land Lise	-251.1	-263.7	-259.87	-256.03	-252.34	-248.63	-247.39	-7
-100.	2016	2020	2025						Pagiculture or Land Ose					46.76	43.66	39.76	
-100.	2016	2020	2025						Industry	49.38	49.24	50.33	48.88	10.70			
-100. -200.	2016	2020	2025				_		Industry Buildings-Residential	49.38 1.42	49.24 1.51	50.33 1.6	48.88	1.75	1.82	1.88	
-100. -200. -300.	2016	2020	2025						Industry Buildings-Residential Buildings-Non-Residential	49.38 1.42 2.32	49.24 1.51 2.6	50.33 1.6 2.81	48.88 1.68 3.04	1.75	1.82 3.52	1.88 3.78	
-100. -200. -300.	2016	2020 Dedicated GHG R	emoval	Electricity Generation	n 📕 Hydro	gen Production			Industry Buildings-Residential Buildings-Non-Residential Transport-Domestic	49.38 1.42 2.32 88.04	49.24 1.51 2.6 92.64	50.33 1.6 2.81 92.99	48.88 1.68 3.04 86.29	1.75 3.27 92.28	1.82 3.52 97.23	1.88 3.78 103.	1
-100. -200. -300.	2016	2020 Dedicated GHG R	emoval ply	Electricity Generation	in Hydro	gen Production xy			Industry Buildings-Residential Buildings-Non-Residential Transport-Domestic Transport-International	49.38 1.42 2.32 88.04 6.05	49.24 1.51 2.6 92.64 8.58	50.33 1.6 2.81 92.99 11.33	48.88 1.68 3.04 86.29 14.13	1.75 3.27 92.28 16.76	1.82 3.52 97.23 19.25	1.88 3.78 103. 22.59	1
-100. -200. -300.	2016	2020 Dedicated GHG R Other Energy Sup Buildings-Resider	2025 emoval ply	Electricity Generation Waste Management Buildings-Non-Resid	in Hydro Indust ential Trans	igen Production try sort-Domestic			Industry Buildings-Residential Buildings-Non-Residential Transport-Domestic Transport-International Total Emissions	49.38 1.42 2.32 88.04 6.05 53.38	49.24 1.51 2.6 92.64 8.58 45.28	50.33 1.6 2.81 92.99 11.33 54.03	48.88 1.68 3.04 86.29 14.13 41.39	1.75 3.27 92.28 16.76 36.25	1.82 3.52 97.23 19.25 35.28	1.88 3.78 103. 22.59 47.45	1
-100. -200. -300.	2016	2020 Dedicated GHG R Other Energy Sup Buildings-Resider	2025 emoval ply	Electricity Generation Waste Management Buildings-Non-Resid	in Hydro t Indust ential Trans	gen Production try sort-Domestic			Industry Buildings-Residential Buildings-Non-Residential Transport-Domestic Transport-International Total Emissions	49.38 1.42 2.32 88.04 6.05 53.38	49.24 1.51 2.6 92.64 8.58 45.28	50.33 1.6 2.81 92.99 11.33 54.03	48.88 1.68 3.04 86.29 14.13 41.39	1.75 3.27 92.28 16.76 36.25	1.82 3.52 97.23 19.25 35.28	1.88 3.78 103. 22.59 47.45	2
-100. -200. -300.	2016	i 2020 I Dedicated GHG R I Other Energy Sup I Buildings-Resider I Transport-Internu	2025 emoval ply tial tional	Electricity Generati Waste Managemen Buildings-Non-Resic Agriculture & Land I	in Hydro : Indust iential Trans Jse	igen Production try port-Domestic			Industry existences Industry Buildings-Nesidential Buildings-Non-Residential Transport-Domestic Transport-International Total Emissions	49.38 1.42 2.32 88.04 6.05 53.38	49.24 1.51 2.6 92.64 8.58 45.28	50.33 1.6 2.81 92.99 11.33 54.03	48.88 1.68 3.04 86.29 14.13 41.39	1.75 3.27 92.28 16.76 36.25	1.82 3.52 97.23 19.25 35.28	1.88 3.78 103. 22.59 47.45	1
-100. -200. -300.	2016	2020 IDedicated GHG R Other Energy Sup Buildings-Resider ITransport-Interna	2025 emoval phy tial itional	Electricity Generation Waste Management Buildings-Non-Resic Agriculture & Land I	in Hydro : Indus iential Transj Zse	igen Production Try port-Domestic			nelistry Industry Buildings-Residential Buildings-Non-Residential Transport-Domestic Transport-International Total Emissions	49.38 1.42 2.32 88.04 6.05 53.38	49.24 1.51 2.6 92.64 8.58 45.28	50.33 1.6 2.81 92.99 11.33 54.03	48.88 1.68 3.04 86.29 14.13 41.39	1.75 3.27 92.28 16.76 36.25	1.82 3.52 97.23 19.25 35.28	1.88 3.78 103. 22.59 47.45	1
-100. -200. -300.	2016	i 2020 I Dedicated GHG R I Other Energy Sup I Buildings-Resider I Transport-Internu	2025 emoval phy tial itional	Electricity Generation Waste Management Buildings-Non-Resid Agriculture & Land I	in Hydro : Indus iential Trans Jse	igen Production try port-Domestic			Industry Buildings-Residential Buildings-Non-Residential Buildings-Non-Residential Transport-Domestic Transport-International Total Emissions	49.38 1.42 2.32 88.04 6.05 53.38	49.24 1.51 2.6 92.64 8.58 45.28	50.33 1.6 2.81 92.99 11.33 54.03	48.88 1.68 3.04 86.29 14.13 41.39	1.75 3.27 92.28 16.76 36.25	1.82 3.52 97.23 19.25 35.28	1.88 3.78 103. 22.59 47.45	1
-100. -200. -300.	2016	i 2020 I Dedicated GHG R I Other Energy Sup I Buildings-Resider I Transport-Internu	2025 emoval pły tiał	Electricity Generalis Waste Managemen Buildings-Non-Resic Agriculture & Land I	in Hydro t Hydro iential Transg Jse	igen Production try port-Domestic		Title	Pirkania ta con o de Industry Buildings-Residential Buildings-Non-Residential Transport-International Total Emissions	49.38 1.42 2.32 88.04 6.05 53.38	49.24 1.51 2.6 92.64 8.58 45.28	50.33 1.6 2.81 92.99 11.33 54.03	48.88 1.68 3.04 86.29 14.13 41.39	1.75 3.27 92.28 16.76 36.25	1.82 3.52 97.23 19.25 35.28	1.88 3.78 103. 22.59 47.45	1

7. You may also explore the rest of the *"WebOutputs"* worksheet to view the results in other formats, for example: emissions by transport and energy consumption by transport.

Webtool Model

How the webtool model works (using the main levers)

1. Select the *"Level of ambition"* (ranging from 1 to 4) for each of the main levers. See the *Scenario and Ambition Levels section* at page 5 and 6 for selecting the levels of ambition.

MacKay Carbon Calculator - UK	× +	• - •	×
 ← → C	oncalculator.beis.gov.uk/overview/e . 🕐 OurSphere Login 🚦 Sign in to	missions-and-primary-energy-consumption/?levers=3333333333333111111111111111111111111	ing list
MACKAY CARBON CALC	SULATOR (1) s, Energy & Industrial Strategy	Overview Transport Buildings Industry CO2 Removal & Gases Electricity Land U	Jse >
Example Pathways	i reset levers	Emissions / Primary Energy Cumulative Emissions / Final Energy	
Lever settings: 🧃	Level of ambition	Greenhouse Gas Emissions 750 Dedicated GHG Removal Electricity Generation Hydrogen Production	Ð
> Transport> Buildings> Industry	3	500 Total Emissions Electricity Generation 250 Electricity Generation 250 Electricity Generation 250 Electricity Generation Buildings-Residential Buildings-Residential	%
 CO2 Removal & Gases Electricity Supply 		0 2015 2020 2025 2030 2035 2040 2045 2050 ● Transport-Domestic ■ Transport-International ■ Total Emissions	
 Land use & biofuels 		Primary Energy Consumption	
		3k Total Waste 4	
Conditions of Use sw	itch to 2100 mode	Oll Natural gas	2

2. Emissions by sources will be displayed right away. The scale at the far right shows the percentage in emissions reduction achieved in 2050, compared to the 1990 levels.

3. You may also explore the *"Transport"* tab to view the results in other formats, for example: emissions by transport and energy consumption by transport under the *"Energy & Emissions"* category.

How the webtool model works (using all the levers)

1. Click the main lever to reveal all its levers.

2. For each of the levers, you may hover over the boxes to read on the short description of the specific level of ambition. Select the *"Level of ambition"* (ranging from 1 to 4) for each of the sub-levers.

3. Otherwise, you can click the lever to access its one-pager for detailed description and explanation.

4. Emissions by sources will be displayed right away. The scale at the far right shows the percentage in emissions reduction achieved in 2050, compared to the 1990 levels.

5. You may also explore the *"Transport"* tab to view the results in other formats, for example: emissions by transport and energy consumption by transport under the *"Energy & Emissions"* category.

Example Pathways

Using the Example Pathways option in the webtool

All the levers are set at level 1 by default. The results displayed are that of a future scenario in 2050 if a business-as-usual approach is taken since 2016.

From the "*Example Pathways*" option, users can choose to set all the levers at level 2 and examine the impacts on the national emissions, if increased ambition is taken to address climate change.

In addition, assuming ambitious actions have been taken since 2016, users can set all the levers at Level 3 using the "*Example Pathways*" option and look at the potential reduction in the national emissions.

Creating your pathway in the spreadsheet

To create your own pathway, users can follow the following instruction:

- 1. Go to the "Control" worksheet and enter your pathway choice into column T, starting from line 70 to 118. You can 'copy' and 'paste' an example pathway (choosing one from columns Q to S) or enter your own. You can use decimals.
- 2. Press F9 to activate the Calculator
- 3. For tips on how to make a good pathway, see: the "Create your pathway" section at: http://www.decc.gov.uk/en/content/cms/tackling/2050/calculator_on/calculator_on.aspx

Source: 2050 Calculator Spreadsheet: "How to" Guide

Key Assumptions and Limitations

Transport

Buildings

Industry

Removal

Electricity Supply

Land use

	Assumptions
1.	Any technological breakthrough that will lead to a significant increase in farming yield is
	not expected, and that any increase in yield is progressive.
2.	Increase in yield can be achieved at a nationwide scale (e.g. industrial players and small
	stakeholders).
3.	The current crops in Malaysia are expected to remain "dominant" (i.e. not replaced by
	other crops).
4.	The proportion of protein sources and diet remain the same (e.g. no drastic switch to
	plant-based protein by 2050).
5.	Palm oil demand is driven by increasing demand for food, chemical products and
	bioenergy (e.g. biofuel, biomass and biogas).
6.	Any available unused lands that are freed up using the levers will be prioritized for
	conversion to forest lands (through reforestation or afforestation efforts).

	Limitations
1.	Much of the national data has been aggregated due to how the original 2050 Calculator model is structured. For example: Coconut and cocoa are both categorized as "cropland" in the MCAS model.
2.	Climate change impacts on the agricultural production is not modelled.
3.	Future imports and exports of resources (e.g. livestock, crops and biofuel) have not been modelled due to lack of data.
4.	

Waste

	Limitations

1.	Many of the existing waste-to-energy technologies are unavailable or in the pilot stage in Malaysia, so it is difficult to design levels of ambition based on the information currently available.
2.	
3.	
4.	

Question

If you have any specific question on the Excel or Webtool model, please feel free to contact the MCAS team. The team will respond as soon as possible.

Kindly refer to the contacts listed on the website (x).